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Abstract—This paper both highlights the ease with which 
the Newton-Raphson power flow can converge to undesired 
alternative solutions and then presents techniques that can 
be used to improve power flow convergence by leveraging 
insights gained from visualizing the power flow solution 
region of attraction. The paper shows that, particularly for 
large-scale power systems, the common “flat start” initial 
voltage guess of one per unit with an angle of zero may not 
be in the region of attraction (ROA) for the desired power 
flow solution. Computationally tractable solution options 
are presented to reduce the likelihood of the power flow 
converging to an undesired solution. Results are 
demonstrated on power systems ranging in size from two to 
23,600 buses.    
 
Index Terms—power flow convergence, power system 
visualization, power flow region of attraction, alternative power 
flow solutions  

I. INTRODUCTION  
Power flow (PF) analysis is a fundamental tool in power 

system operation and planning. It is used to solve the set of 
nonlinear power balance equations to determine the voltage 
magnitudes and analysis at all the buses in an electric power 
system. These voltage values can then be used to determine how 
the power flows through the grid and to calculate the reactive 
power outputs of the generators. For at least 50 years, it has been 
known that the power flow can have multiple solutions [ 1]. 
Usually, but not always, the solution with the highest per-unit 
voltage magnitudes represents the solution at which the power 
system would actually operate and hence is sometimes known as 
the “operable solution” (OprS). Since this solution would be 
stable if typical power system dynamic models are included, it is 
also sometimes called the stable equilibrium point (SEP). The 
other solutions usually have lower voltages and are known as 
either low-voltage solutions or alternative solutions [ 2], [ 3]. 
Here, the abbreviation AltS is used to denote a particular 
alternative solution. Some authors also refer to them as unstable 
equilibrium points (UEPs) since they would be unstable with 
typical power grid dynamics. 

By far the most common technique for solving the power 
flow solutions is to use the Newton-Raphson (NR) approach [4]. 
In the NR, the non-linear equations are solved by making an 
initial guess of the bus voltages and then iterating until either 
convergence, divergence, or a maximum number of iterations is 

reached. Particularly for small power systems, the common 
practice is to make an initial voltage guess in which all voltage 
magnitudes are one per unit and all angles are zero. This is 
known as a “flat start” solution. Whether the NR converges to 
the operable solution or another solution depends on this initial 
guess. 

Sometimes one or more of the AltSs can be desired, such as 
in some voltage stability proximity algorithms [5], [6], [7]. As 
such, techniques have been developed specifically for 
converging to these solutions [2], [8], [9], [10]. Yet for the vast 
majority of power flows, the goal is to converge only to the 
OprS. Usually, this is achieved either by using the flat start for 
small systems or by starting from a previous solution for large 
systems. Then, for example, if new buses have been added, 
initial voltage guesses are only needed for this subset of buses 
with flat start values a common choice. However, as is presented 
here, this can result in convergence to AltS.  

The contribution of this paper is in the area of gaining 
insight into power flow convergence and then leveraging this to 
present improved techniques for increasing the likelihood of 
convergence to the desired OprS. This paper is organized as 
follows. Section II provides necessary background information 
on the power flow and visualization of its regions of attraction. 
Section III then introduces the test power flow cases. Section IV 
then presents and demonstrates the techniques for improved 
convergence, while Section V concludes with recommendations 
and directions for future work. All the computational results 
presented here have been done using PowerWorld Simulator 
version 24 [11].   

II. BACKGROUND 
The power flow solves the bus power balance equations to 

determine the phasor voltages at each bus in an electric grid. 
Since the phasor voltages and complex impedances can be 
expressed in either polar or rectangular form, there are several 
formulations of these equations, with the selected form 
impacting the NR convergence. Here, two forms are used: the 
polar form from [12] (NRP) with the voltages given in polar 
notation (i.e., the bus k voltage is Vk = Vk∠θk) and the 
rectangular form from [ 13 ] (NRR) with the voltages in 
rectangular notation (Vk = ek + jfk). For a grid with N buses, the 
real and reactive NRP power balance equations are given in (1) 
and (2), while the NRR equations are in (3) and (4),  
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where PGk and QGk are respectively the real and reactive power 
generation at bus k, PLk(Vk) and QLk(Vk) are the loads; Gkn and 
Bkn are the real and imaginary components of the bus admittance 
matrix. Note, this formulation allows the load values to be a 
function of their bus voltage magnitudes. With the common ZIP 
load model [14], the bus load is represented as having a portion 
that varies with the square of the voltage magnitude, a portion 
that varies linearly with voltage magnitude, and then a constant 
power component. 

 Of course, in a typical power flow, not all the voltages are 
independent variables. For example, at the slack bus, the voltage 
magnitude and angle are fixed, and at generator (PV) buses, the 
voltage magnitude is fixed, within reactive power limits. 
Additionally, as is the case here, various external actions can be 
imposed on the power flow solution, including checking 
generator reactive power limits, adjusting transformer taps and 
phase angles, changing the statuses of switched shunt devices, 
and modifying generation to enforce area interchange 
constraints. All of these can impact the overall power flow 
convergence. 

With an N bus grid, the number of independent voltage 
variables will be between N and 2N. Define this value as m, and 
the set of initial voltage guesses as x0 ∈ ℜm (represented in 
either polar or rectangular format). The region of attraction 
(ROA) (also known as the domain of attraction) for an NR 
algorithm is the set of voltage guesses that converge to a 
particular solution. Papers visualizing the power flow ROA 
include [3], [15], [16], and [17], with several noting the ROA’s 
fractal nature, at least with some power flow formulations. 
These fractal ROAs are also mentioned in [18], which highlights 
the need for further research on power flow convergence. 

 While several prior works have done a nice job of 
visualizing the ROA for electric grids with two or three buses, 
and [17] considers a grid with 14 buses, there is very little work 
looking at large-scale grids. This is not surprising given that the 
ROA is an m-dimensional space, and that calculating the values 
needed to show even for a 2D projection of the ROA can be 
computationally involved for larger-scale grids. The contribution 
of this paper is to address this shortcoming and leverage the 
insights that can be gained from the ROA visualizations to 
provide techniques for improved power flow convergence.  

III. TEST CASES AND INITIAL ROA VISUALIZATIONS  
As a starting point, consider the two-bus grid shown in 

Figure 1 with its OprS shown; in the figure, the green arrows are 

used to visualize the flow of real power and the blue arrows the 
flow of reactive power. Figure 2 shows the same grid, except 
that it is solved with an initial voltage guess that results in 
convergence to an AltS. Note the high reactive power output 
from the slack generator, indicating this would not correspond to 
an operable solution. Nevertheless, it is a solution since it 
satisfies the power balance equations.  

 

Figure 1. Two-Bus Electric Grid, Operable Solution (OprS) 

 
Figure 2. Two-Bus Electric Grid, Alternative Solution (AltS)  

The ROA is then visualized by repeatedly solving the power 
flow with varied initial voltage guesses and then using a color 
mapping to differentiate between the guess that solved to the 
OprS and those that solved to the AltS. This is shown in Figure 
3, with orange shades indicating guesses that resulted in the 
OprS and purple guesses solving to the AltS using the NRP 
algorithm; the number of iterations needed to get each solution 
is indicated by the color intensity, with the iteration count set to 
negative if it solved to the AltS. The x-axis shows the voltage 
angle guesses, ranging from -180 to 180 degrees in one-degree 
increments, and the y-axis shows the voltage magnitude guesses, 
ranging from 0 to 1.5 pu in 0.01 pu increments. Hence, 
generating the figure requires a total of 54,000 power flow 
solutions (360 times 150). Of this total, approximately 20.3% 
converged to the OprS with an average of 4.8 iterations, and 
79.7% converged to the AltS with an average of 7.2 iterations. 

 
Figure 3. Two-Bus NRP Region of Attraction (ROA)Visualization  

Given that the goal here is to improve power flow 
convergence for realistic grids to the AltS by leveraging ROA 
insights, larger grids also need to be considered. An initial step 
in this direction is the 42-bus case from [19], whose one-line is 



shown in Figure 4, with the figure showing the voltage 
magnitude contour [ 20 ] for the OprS. At this solution, the 
voltage angle variation across the system ranges from zero 
degrees at Bus 4 (Grafton345, the slack bus) to -40.9° at Bus 34 
(Rose138).  

 
Figure 4. 42-Bus Electric Grid, Operable Solution (OprS)  

To gain convergence insight again the ROA is considered. 
However, recognizing that the ROA is an m-dimensional space 
now with m approximately 80, only a 2D projection of the full 
ROA can be shown in a figure. Nevertheless, as will be 
leveraged in the next section, this can still provide good insight. 
One approach is just to vary the voltage magnitude and angle 
guess at a single bus, keeping all the other voltages constant at 
the OprS. An example of this is shown in Figure 5, where the 
voltage varies at Bus 34, again using the NRP algorithm. Of 
course, any bus could be chosen, and actually, all buses will be 
considered in the next section. The rationale for selecting Bus 
34 initially is that it has the largest angle variation from the 
slack bus. What is particularly interesting from Figure 5 is that 
the flat start voltage of 1.0∠0° is not in the ROA for the OprS. 
Instead, it converges to the AltS shown in Figure 6, in which 
the Bus 34 voltage is 0.61 pu (note the drastic change in the 
contour color key compared with Figure 4). Here, only 1.0% of 
the guesses converge to OprS (with an average of 6.5 iterations) 
and only 2.7% to the AltS (with an average of 16 iterations); the 
remainder diverge. Given that when an engineer adds a new bus 
to an existing system, it is common to just set the new bus 
voltage to its flat start value, this is concerning.  

 
Figure 5. 42-Bus Electric Grid 2D ROA Projection for Bus 34 

The last example is a 23,600 bus synthetic electric grid from 
[ 21 ] covering the central portion of the US, with Figure 7 
showing its one-line along with a contour of the bus voltage 
angles (in degrees) at its OprS. Note the variation of almost 360° 
across the grid. Both this grid and the 42-bus grid are available 
for public download at the repository described in [22]. 

 
Figure 6. 42-Bus Electric Grid, An Alternative Solution (AltS)  

 
Figure 7. 23,600-Bus Electric Grid Voltage Angle Contour  

In this case, the ROA has an extremely high dimension; 
however, a 2D projection can be created by selecting a 
particular bus. However, aside from this now being more 
computationally taxing (i.e., solving tens of thousands of power 
flows with a 23,600-bus grid), given that the goal is to solve for 
the OprS, only voltage magnitude guesses close to 1.0 per unit 
need to be considered. If the voltage magnitude guess is fixed at 
1.0 per unit, then the only independent variable is the voltage 
angle, allowing the results to be shown in a graph. An example 
of this is shown in Figure 8 for Bus 180977 (located in the US 
state of Michigan), which has OprS voltage of 1.013∠-116.6°. 



In the figure, the x-axis plots the initial guess angle (with a 
fixed initial magnitude guess of 1.0 per unit), and the y-axis is 
the number of iterations to converge using the NRP, with 
positive values indicating convergence to the OprS and 
negative values used to indicate AltS convergence, except -40 
indicates non-convergence. Overall, 16.1% converged to the 
OprS, 76.1% to an AltS, and 7.8% did not converge. The ROA 
is centered on the OprS value of -116.6° and extends about 30° 
in each direction. As is the case with the 42-bus example, the 
flat start guess is not within the OprS’s ROA.  

 
Figure 8. 23,600-Bus Electric Grid Bus 180977 Voltage Angle Convergence 

The takeaway from these examples, particularly the 42-bus 
and 23,600-bus ones, is that with solved cases, it is relatively 
easy to choose an initial voltage guess with flat start values that 
is not in the ROA for the OprS. This could occur, for example, 
in the extremely common situation where a planning engineer 
enters new buses into a solved case and defaults to flat start 
voltages for the new buses. While the engineer could select 
other values, the goal of this paper is to present algorithm 
enhancements that can increase the likelihood of OpsS 
convergence regardless of the initial selection. 

IV. IMPROVED SOLUTION METHODS  
In this section, three methods for improving the NR 

convergence to the OprS are considered. The first is to utilize 
the NRR algorithm with the optimal multiplier first proposed in 
[23] for the rectangular formulation, with more details given in 
[8] and [24]. With this approach, denoted here as the NRRO, 
the Newton-Raphson algorithm is modified with an optimal 
scalar (multiplier) that prevents divergence. The second 
approach is to modify the load voltage dependence so that when 
the load is modeled using the extremely common constant 
power approach, it is automatically converted into a constant 
current load during the solution if its voltage magnitude is 
below a threshold, and then into constant impedance if it is 
below a lower threshold. This approach, which is widely used 
in commercial power flow solutions, leverages the insights 
from [25] that noted AltSs would be unlikely when the loads’ 
bus voltage dependence has a voltage magnitude exponent 
greater than unity. The third approach is the application of 
various heuristics that are applied before the start of the NR to 
modify voltage guesses that are likely to result in convergence 
to AltSs. 

With the first approach of using the NRPO for the test 
cases, it does seem to minimize or perhaps eliminate the fractal 
aspects of the ROA. However, it doesn’t seem to significantly 
expand the ROA. As examples, Figure 9 shows the ROA for the 
Figure 3 scenario, except using the NRPO, and Figure 10 shows 
the ROA for the Figure 5 scenario. In both cases, the ROA is 
not significantly expanded, now with 20.6% converging to the 
OprS for the two-bus scenario (compared to 20.3% previously) 
and 1.5% for the 42-bus case (compared to 1.0% previously). 
For AltS convergence with the two-bus case, essentially all of 
the other guesses converge to the AltS, whereas with the 42-bus 
case, 13.2% do, with the remainder not converging. Since the 
average number of iterations decreases, the NPRO is a useful 
approach, but is certainly not a panacea for robust OprS 
convergence.  

 
Figure 9. Two-Bus NRRO ROA Visualization  

 
Figure 10. 42-Bus Electric Grid NRRO ROA 2D Projection for Bus 34 

The second approach is to automatically convert constant 
power loads to constant current when their voltage magnitudes 
drop below a threshold (denoted as MinVP) and to constant 
impedance when their voltage drops below a second threshold 
(MinVI). Using typical values of MinVP = 0.7 pu and MinVI = 
0.5 pu, for the two-bus scenario using the NRRO, the ROA, 
shown in Figure 11, is slightly expanded to 21.5% and has a 
different shape. Additionally, due to the change in the load 
model, the AltS now has a voltage magnitude of zero. Figure 12 
uses the same parameters with the 42-bus case, with the OprS 
region still at 1.5%. Interestingly, and not helpful for this 
paper’s purpose, the AltS region is now at 76.6%. 

A similar result occurs in the 23,600-bus case when using 
MinVP = 0.7 and MinVI = 0.5, as shown in Figure 13, which 
displays iteration values for the 1.0 per unit voltage angle 
sweep. Convergence to the OptS increases from 16.1% to 
20.6%, while the remainder converges to an AltS. Based on this 



testing, the conclusion for the second approach is that it is 
marginally helpful and therefore recommended, however, it still 
leads to many situations in which a flat start converges to an 
AltS.  

 
Figure 11. Two-Bus NRRO ROA with MinVP=0.7, MinVI=0.5 

 
Figure 12. 42-Bus NRRO ROA with MinVP=0.7, MinVI=0.5 

 
Figure 13. 23,600-Bus NRRO 1D ROA with MinVP=0.7, MinVI=0.5 

 
 

The third approach is to utilize various heuristics to modify 
the initial guess prior to the start of the NR algorithm to avoid 
this situation. Again, the assumption here is the common one in 
practice, where an engineer takes a solved power flow and 
modifies it by adding new buses. While ideally the new bus 
voltage guesses would be close to those of their solved 
neighbors, there will certainly be situations in which that is not 
the case. 

The heuristic presented here involves modifying the 
guesses of buses where there are large mismatches. Of course, 
given that the purpose of the power flow is to drive the 
mismatches to zero, there will be mismatches at the start of the 
solution. However, when reasonable voltage guesses are used, 

these values will usually be modest. For example, when solving 
a full system from a flat start at every bus, the line flows will be 
zero (except for differences caused by phase shifting and load-
tap-changing transformers, as well as non-unity generator 
setpoints). The mismatches are then due to the bus power 
injections, which would tend to be bounded by the sum of the 
incident branch (i.e., the transmission lines and transformers) 
complex power limits. Therefore, a reasonable heuristic is to 
adjust the voltage guesses at buses in which the flows through 
the incident branches are at least somewhat above their ratings.  

The balancing act in applying these heuristics is the need to 
catch situations that would likely result in either divergence or 
convergence to an AltS in a computationally efficient manner 
without unduly affecting the overall computational efficiency of 
the NR. This is achieved with the presented heuristic, as it 
involves calculating all the initial line flows of computational 
order N and then determining the mismatches and adjusting the 
voltages at the likely small subset of buses flagged by the 
heuristic. A key heuristic parameter is the amount by which the 
initial branch flow (calculated using the voltage guesses) 
exceeds its limit. If this value is too low, many branches would 
be flagged, whereas if it is too high, problem branches could be 
missed. The scalar parameter used here is 4.0, meaning that 
branches with initial flows above 400% of their limit are 
flagged for correction. 

The applicability of this heuristic is considered by using it 
to recalculate the ROAs for the cases presented in the three 
previous figures. Figure 14 shows the two-bus case assuming a 
branch limit of 300 MVA. Now the OprS ROA is at 67.4% 
including all initial guesses with a 1.0 pu voltage magnitude. 
For the 42-bus case at Bus 34, there are two 138 kV lines, one 
with a rating of 250 MVA and one with a rating of 336 MVA. 
Figure 15 shows the 42-bus ROA for Bus 34 applying the 
heuristic, now with the OprS ROA at 98.6%. Last, Figure 16 
shows the convergence iterations for the 23,600-bus case again 
at Bus 180977, now with all of them converging to the OptS.    

 
Figure 14. Two-Bus ROA Using Convergence Enhancement Heuristic 

To further test this heuristic, it can be applied to flat starts 
at other buses. While space prevents showing more ROA 
visualizations, the algorithm’s robustness can be assessed by 
just considering whether it converges to the OprS. For the 42-
bus case, when testing all buses (except the slack) without the 
heuristic (though still with the NRPO, and with MinVP = 0.7 
and MinVI = 0.5), converges to the OprS for 25 buses (61%), 
converges to an AltS for 32% and does not converge for the 



remainder. With the heuristic using a line limit scalar of 2.5, all 
of them converge to the OprS. For the 23,600-bus system, when 
testing flat start values at each bus individually without the 
heuristic, only 37.9% converge to the OprS. In contrast, with 
the presented heuristic and a line limit scalar of 2.5, this value 
increases to 99.0%. 

Figure 15. 42-Bus ROA Using Convergence Enhancement Heuristic 

Figure 16. 23,600-Bus 1D ROA Using Convergence Enhancement Heuristic 

V. CONCLUSION AND LOOKING FORWARD 

The key contributions of the paper are 1) to highlight the 
ease in which the NR power flow can converge to undesired 
AltSs, 2) to gain insight into the NR convergence by visualizing 
its ROAs, and 3) to test the applicability of three methods for 
enhancing convergence to the desired OprS. The paper 
demonstrates that this convergence can be significantly 
enhanced through the use of a simple heuristic in the common 
situation where flat start voltage guesses are made at a small 
subset of buses in an otherwise already solved power flow. 
Results are demonstrated on three test grids with sizes up to 
23,600 buses. Future work is needed to develop additional 
techniques for capturing other common situations and to do 
further testing on realistically sized grids. 
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