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Abstract

The goal of this paper is to facilitate the development
of synthetic electric grid topologies that replicate
the structural properties of real-world power systems.
This paper demonstrates that the topology of the
North American transmission grid can be modeled
using a Spatially-Aware Degree-Corrected Stochastic
Block Model (SA-DCSBM), which captures three
key features in real grids: modularity, heterogeneous
node degree distributions, and distance-constrained
connectivity. Once the model is fitted to the
North American transmission network data, synthetic
topologies (excluding electrical phenomena) are
generated to demonstrate that they accurately reproduce
real grid statistics across multiple structural dimensions,
including modularity, edge length distribution, degree
heterogeneity, and spectral robustness. The SA-DCSBM
thus offers a modeling framework for creating
high-fidelity synthetic electric grid topologies that
preserve spatial and structural realism.

Keywords: Degree-corrected stochastic block model,
electric grid, topology, vulnerability, complex networks.

1. Introduction

Electric grid research engineers are increasingly
employing synthetic grid models to test algorithms and
simulate planning scenarios. These models are especially
important when real grid data are unavailable due to
privacy concerns [1],[2]. A useful synthetic grid should
resemble the real network in its underlying structure,
that is, its connectivity patterns, modularity, and spatial
organization.

While several synthetic grid models and test cases
have been developed [3], [4], [5], [6], [7], this paper
proposes a stochastic extension to existing synthetic
grid generation algorithms to add modeling realism for
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intra-area and inter-area transmission lines.
1.1. Goal and Approach

The goal of this work is to support the
creation of synthetic transmission networks that
closely replicate the structural features of real-world
electric grids. Specifically, this paper investigates
whether networks in the North American Eastern
Interconnect (EI) and the North American Western
Interconnect (WECC) exhibit the structure implied by
a Spatially-Aware Degree-Corrected Stochastic Block
Model (SA-DCSBM), and whether such a model can
be used to generate realistic grid topologies.

The Stochastic Block Model (SBM) [8] models
network connectivity based on group membership,
assuming all nodes within a group have identical
degrees. However, real-world networks often exhibit
both community structure and significant degree
heterogeneity. To address the limitation of the lack of
degree heterogeneity in SBMs, the Degree-Corrected
Stochastic Block Model (DCSBM) [9] incorporates
node-specific parameters that capture variations in
degree, making it better suited for empirical networks.
SBMs and their variations have been used to study
community structures in social networks [10].

As described in [[11], the edge-probability matrix B
defines the probability of an edge existing between two
nodes, based on the communities to which the nodes
belong. That is,

P(Alj = 1) = BZ[,Zj (1)

where A is the adjacency matrix. B .. is the
edge-probability matrix where i € community z; and
J € community z;. Then, intra-community edges have
nodes within the same community z and connect with
probability B, = pinya. The inter-community edges have
nodes in different communities z,z’ and connect with
probability B,/ = pinter- S0,

B= (pintra
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A: Pintra = 0.08, Pinter =0.08

B: Pintra = 0.12, Pinter = 0.06

Figure 1. Effect of decreasing off-diagonal probabilities
in a stochastic block model with four equal
communities. All panels share the same node positions.
As the inter-block probability p;,ier decreases while
PDintra increases and then stays constant, the network
transitions from random-like connectivity (A) to
well-separated communities (D).

The SA-DCSBM extends the classical Stochastic
Block Model (SBM) by incorporating three key
features observed in electric grid networks: degree
propensities that ensure nodes reproduce observed
heterogeneity, block affinities that encode modular
structure, and a spatial decay function that penalizes
long-distance links. Together, these components yield
networks that preserve the modular, heterogeneous, and
spatially embedded character of real transmission grids.

1.2. Importance of Spatial Realism and
Existing Grid Creation Approaches

Spatial realism is essential because many grid risks
are geographically driven [13]. Large-scale weather
events span multiple states, so synthetic networks
with misrepresented distances cannot recreate correlated
outages. Geomagnetic disturbance studies rely on line
length and orientation, which govern induced currents
and transformer stress. Cascading-failure simulations are
likewise sensitive to physical layout, as long-distance
ties can accelerate overload propagation [[14]]. To support
credible planning and analysis, a synthetic grid topology
must reproduce actual line lengths and inter-regional
connections.

Progress toward modeling a realistic transmission
network is attributed to several model families. One of

the first spatial graph generators was introduced in [13],
where substations were placed using Poisson or uniform
sampling, and edge creation was limited by distance. A
two-stage growth process was proposed in [16]: first, a
cost-efficient backbone satisfying demand was laid out;
second, additional lines were inserted to match empirical
degree, path-length, and clustering statistics, all while
respecting node coordinates. Metrics such as spatial
densities, line lengths, and degree histograms from a
target grid are measured in [17]. Then, edges are rewired
until those distributions are replicated.

Anonymized real systems are used in [4] by
fragmenting the networks, reassembling a user-defined
mix, and adjusting limits through AC optimal power-flow
studies to pass N-1 security tests. In [I8],[19],
candidate lines are selected from Delaunay neighbors;
an iterative penalty—reward search then adds or removes
branches, balancing line-length cost against contingency
sensitivities. A historical-evolution model in is
optimized for construction cost and robustness, and
anchors all decisions to actual geography.

Existing grid creation algorithms provide valuable
test cases and have advanced the generation of realistic
topologies. Building on this foundation, our approach
embeds regions as explicit structural constraints during
network construction by enforcing inter-area sparsity.
This feature, observed in real-world transmission grids
as a reduced density of ties between regions [21]], is
a structural property that the proposed algorithm is
designed to preserve.

1.3. Contributions

This paper makes the following contributions:

1. It shows that transmission grids in the EI and the
WECC are well-approximated by SA-DCSBM,;

2. It uses the fitted models to generate new
synthetic topologies that preserve node counts and
spatial coordinates while approximating observed
edge-level and spectral metrics;

3. It establishes SA-DCSBM as the next step in
improving the realism of synthetic grid topologies.

2. Electric grid topology and why it fits
SA-DCSBM

Electric grids are naturally compatible with the
Spatially-Aware Degree-Corrected Stochastic Block
Model (SA-DCSBM). Specifically, electric grids show
three important features that align well with this model:
(1) wide variation in how many connections each node
has in every region (degree heterogeneity), (2) modular



structure based on regions, and (3) edge formation
constrained by geographic distance. While the formal
SA-DCSBM formulation is introduced in the next
section, this section focuses on why electric grids are
a good fit.

To motivate this, the electrical grid is represented
as a graph, G = (V,E), where V is the set of nodes
representing substations and E is the set of edges
representing transmission lines. Each node v € V
is assigned to one of k regions, which are treated
as communities in the model. The key notation is
summarized below:

n: Total number of nodes (substations),

i, j € V: Nodes in the graph,

k: Total number of communities (regions),
gn> &k € {1, ..., K}: Community labels,

A;;: Adjacency matrix entry (1 if an edge exists
between i and j; 0 otherwise).

Electric grids are operationally partitioned into
regions defined by control and planning boundaries.
When viewed as graphs, these regions often correspond
to topological clusters. The extent to which these clusters
form well-separated communities is quantified by the
modularity score Q [22],

1 kik
0=7-> [Ai,- - %] 5(gin8)) ()

i,Jj

0 in Eq. compares the observed number of
intra-community edges to the expected number under a
random graph with the same node degrees. The value
of Q may lie in the range [—1,1], but in real-world
networks it typically falls between 0 and 1. A high Q
indicates that most edges fall within communities rather
than between them, reflecting strong internal cohesion
and weak external connectivity. A low Q would imply
that the community partition is either arbitrary or that
the network is densely interconnected across groups.

When operational boundaries are treated as
community labels, Q = 0.898 for the EI and Q =
0.872 for the WECC suggest these regions align with
meaningful topological separations in the grid. Figure 2]
shows the edge count matrix for the top 10 communities
in the WECC (left) and the EI (right). The strong
diagonal dominance visually confirms that intra-area
connectivity dominates, i.e., most edges are concentrated
within individual communities. Off-diagonal entries are
sparse, indicating a relatively small number of inter-area
links. This connectivity pattern is captured by Q, which
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Figure 2. Edge count matrix showing the top 10
regions/communities in the WECC (left) and the El
(right). Strong diagonal dominance confirms that most
edges are intra-area, consistent with modular
operational structure.

helps explain the high Q scores observed in both
interconnections.

In addition to modularity, real grids exhibit degree
heterogeneity both globally and locally, within specific
regions. Figure[J]illustrates the degree distribution across
a few regions in the WECC (top) and the EI (bottom).
Each box plot represents the distribution of node degrees
within a given area. The consistent presence of long
whiskers and outliers, even in regions with relatively
low median degree, indicates that some substations have
many more connections than others.

This heterogeneity in node degree can be quantified
using the degree Gini coefficient, adapted for graph
networks in [23]]. For a network with n nodes and degrees,
deg(i), sorted in non-decreasing orderdeg ;) < deg) <
... < deg,, the degree Gini coefficient is defined as:

Z?:] (l’l +1 - l) deg(l)
s deg;
n-—1

n+1-2

G(G) = “4)
The Gini coefficient ranges from 0 to 1, where 0
indicates perfect equality (i.e., all nodes have the same
degree), and 1 indicates maximum inequality (i.e., one
node has all the connections, and the rest have none).

Figure [3] illustrates degree heterogeneity across
regions, showing variability within and between regions.
Figure highlights strong intra-area connectivity,
reinforcing the modular character of the grid. These
two properties, degree heterogeneity and modularity, are
central to the SA-DCSBM.

To encode them formally, the SA-DCSBM builds on
the classical DCSBM [9]]. In the DCSBM model, the
probability of an edge between nodes i and j for graph
Gis:

PI‘(AI']' = ]) = 0,-0,~Bgigj. (5)
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Figure 3. Degree distribution for selected regions in the
WECC (top) and the El (bottom).

Where:
A;j: Adjacency matrix,
6;: Vector of node-specific degree parameters.
8i» ;- Community labels for nodes i and j,

Bg,g;:  Connection
communities.

probability  between

This model captures degree heterogeneity through
the 6; parameters, and modular structure through the
matrix B. Figure [T| shows how varying the off-diagonal
values of B shifts the model from clearly separated
communities to a nearly random structure. When
extended to account for spatial constraints, it becomes
useful in modeling electric grid topologies.

Electric grids exhibit modularity that is both
structural and functional in nature. The functional
aspects of these communities have been redefined in
[24] and [_25], introducing metrics such as electrical
coupling strength to indicate strong intra-community
connections and weak inter-community connections,
as demonstrated in systems with fewer than 500
buses. Additionally, as shown in [26]], nodes within
topological communities often synchronize together,
and their community consistency is correlated with
dynamical stability. This provides strong evidence that
community-aware generative models are well-suited
for producing realistic synthetic grid topologies that
preserve both structural and operational properties.

3. Data and Model Fitting

This section describes the datasets used, the voltage
configurations, and the methodology for assigning
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Figure 4. Distribution of edge lengths in the WECC
and the EI.

communities that align with regions in the electric
grid. The North American transmission grid data is
used. This data includes node locations and voltage
levels. Each network is converted into an undirected,
unweighted graph G, where nodes are substations and
edges are transmission lines. Node coordinates are spatial
embeddings, and edge lengths are calculated using the
haversine formula. Each node is also assigned to an
operational area, which serves as its community label.
The final graphs capture the hierarchical and modular
structure of real power systems.

To examine how structural properties vary with
voltage level, the network is analyzed under three
configurations: 345kV, 500kV, and 765kV transmission
networks, each combined with the Low Voltage
(LV) network. The LV network is considered under
300kV. This results in layered variants with identical
node sets but different edge sets, allowing a
controlled comparison of how high-voltage overlays
affect inter-area connectivity and influence spectral,
topological, and modular characteristics.

Community labels for SA-DCSBM fitting are taken
directly from regions in the data, such as control regions
or balancing authorities. These regions are treated as
fixed blocks g;, with each node assigned a label based on
the area metadata of its substation. Unlike unsupervised
methods that detect communities using spectral patterns
or modularity optimization [27], this approach preserves
geographic boundaries. As a result, the fitted edge
probability matrix B retains real-world meaning by
quantifying how strongly different operational zones are
connected.

4. Methodology
4.1. Spatially-Aware DCSBM

Fitting the DCSBM model to a network involves
optimizing the degree correction parameters (6;), the



block affinity matrix (B), and the block memberships
(gi)- In electric grids, block structure is aligned with
operator-defined regions that correspond to regulatory,
operational, or geographic boundaries, which improves
computational efficiency by fixing block memberships
a priori, eliminating the need for their inference. Using
predefined blocks ensures results remain operationally
relevant.

To optimize only the degree correction parameters
(6;) and the block affinity matrix (B) while fixing g; to
predefined regions, a maximum likelihood approach is
employed. The model parameters for classical DCSBM
shown in Eq. [§] are optimized by maximizing the
log-likelihood of the observed graph:

L(0,B)= > Aijlog (6:0By) — > 0:0,Byq,.
irJ i,

(6)

The first term accounts for the likelihood of

observed edges, and the second term penalizes the

expected number of edges given the model parameters,

ensuring a normalized probabilistic formulation. To

account for geographic distance in edge formation, the

proposed spatially-constrained DCSBM modifies the
edge probability as follows:

Pr(A;; =1)=0,;0;Bg e %/t izj. (]

where d;; denotes the haversine distance between nodes
i and j, and 4 > 0 is the spatial decay parameter.
This form penalizes long-distance edges and encourages
local connectivity, in line with the physical constraints
of electric grids.

Among candidate heavy-tail  kernels, the
single-parameter exponential e~%-i/1 captures the
prevalence of very short links (maximal at d = 0)
and provides a smoothly decaying long-distance tail,
without the extra tuning required by two-parameter
forms such as Weibull, log-normal, or power-law. With
only a single scale parameter(1), the exponential kernel
is interpretable, statistically tractable, and aligned with
the link-length distributions observed in transmission
networks. For these reasons, exponential decay is
adopted as the baseline kernel. However, while it is
effective for most line lengths, it may underrepresent the
heavier tails associated with rare backbone transmission
lines.

The Bernoulli log-likelihood under the spatial model
then becomes,

£L(6,B,2) = Z [Aij In (aieng,-gje_d"f/’l)

i<j
(1= Ay In (1= 6:0Bgg, ™) | (8)

Initial parameter estimates are computed as:
0) _ k; Mmys
0, =c———

. BN =
Zj i8j=8i "J

Zier,jEs e~ dijl ©
where m,s is the number of observed edges between
blocks r and s. The initial value for A is set at the mean
length of the observed voltage layer network.

The goal is to refine the model parameters such
that the predicted edge structure closely matches
the observed network. The node-level parameters 6;
reflect each node’s relative importance in forming
connections, while the matrix B captures the inter-block
interaction tendencies. Once initialized, the parameters
are updated iteratively to maximize the log-likelihood.
The contribution of each observed link to the likelihood
is computed, and the sum is used to assess the overall
model fit.

The optimization is subject to three constraints. To
resolve scale ambiguity, @ is constrained such that the
sum within each block equals the total degree:

Zei = kg. (10)

All By, . values must remain non-negative to ensure
valid probability estimates. Block memberships g; are
predefined and not optimized during the fitting process.

Gradients are then derived to support iterative
likelihood maximization:

9L B 0By, " (11)
96; 4] 6 1-0;0;Bgg e il
oL Z Aij 6,87l (12)
aBrs iigi=r Brs 1- aiajBrse_dijM
J:gj=s
oL Ajj—0,0;Bgq el a; 13
ER =2, =608y e |22 1
= i0Bgg;

After each iteration, @; is re-normalized to satisfy
the constraint in Eq. The stopping criterion is when
the relative change in log-likelihood falls below 107°.
The optimal fitting takes 1,500 iterations to converge for
the low-voltage network and 100-200 iterations for the
different high-voltage networks.
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Figure 5. Link prediction using the fitted SA-DCSBM.

Once the spatial DCSBM parameters are fitted,
synthetic graphs are generated by sampling edges based
on the learned parameters 6, B, and 4. These generated
graphs preserve both the modular and spatial structure of
the original grid and are validated against real network
statistics in Section[3.1]

4.2. Convergence and Goodness-of-Fit

The receiver operating characteristic (ROC) curve
and its area under the curve (AUC) provide a measure of
goodness of fit for the SA-DCSBM because they directly
assess the model’s ability to distinguish real edges from
non-edges based on learned edge probabilities[28]]. Since
SA-DCSBM defines a probabilistic distribution over
edges incorporating spatial decay, modular structure, and
degree correction, a high AUC indicates that the model
consistently assigns higher scores to true edges than
to false ones. This threshold-independent evaluation is
particularly useful for power grid topologies, which are
sparse and lack a natural cutoff for edge presence. Figure
[3] shows the ROC plot for the proposed model fit.

For the WECC at 345 kV and 500 kV, AUC values
of 0.984 and 0.975, respectively, demonstrate separation
between existing and non-existent edges. Even higher
AUC:s are achieved for the EI at 345 kV and 500kV (0.993
and 0.995), indicating good prediction, while the 765 kV
layer shows slightly reduced Q (0.946), reflecting greater
spatial heterogeneity at that voltage level. Overall, the
near-unity AUCs indicate that the model score provides
a good fit to the topology of each layer.

4.3. Grid topologies from the fitted model

The fitted SA-DCSBM synthesizes grid topologies
using each node’s geographic coordinates, voltage level,
and community label as input. The model parameters
include node-specific degree factors 6, the inter-block
connectivity matrix B, and spatial decay constants A,

which are loaded separately for the high-voltage (HV:
345kV, 500kV, and 765kV) and low-voltage (LV: less
than 300kV) layers.

Nodes are first divided into high-voltage (HV) and
LV sets based on a specified voltage threshold. Edges
are then sampled from the fitted SA-DCSBM model,
yielding an expected total edges that is higher than
the fixed edge budget, typically set as Ey, = [1.22n]
following empirical estimates of grid density [3[]. To
ensure spatial plausibility and improve computational
efficiency, candidate edges within each voltage group are
filtered using a K-nearest-neighbor (KNN) search. Each
HYV node retains its 5 nearest neighbors, while each LV
node retains its 15 nearest neighbors. This KNN filtering
step reduces the sampling space while preserving the
intended probabilistic structure of the SA-DCSBM.

Edge probabilities are computed using the fitted
model parameters, combining degree correction factors,
inter-block affinities, and the spatial decay p,, =
0¢,0¢, Bg, gve(‘d"“/ 4, Additional penalties reduce the
probability of forming edges between high-degree nodes
or between LV nodes that do not share a common
neighbor. These weights are normalized, and edges are
sampled without replacement to match the typical edge
budget.

Since generative models may not produce a fully
connected graph, a final patching step is used to connect
any isolated components. This is performed using a
Delaunay-based minimum spanning tree that identifies
spatially short links between disconnected parts. This
step modifies only a small portion of the graph (fewer
than 0.1% edges are added) and does not interfere with
the original sampling process.

Figure [6] shows the resulting synthetic topology
of the SA-DCSBM model on the EI footprint.
Most edges remain on land because each HV
and LV bus considers only its nearest 4 and
15 neighbors, respectively, while the exponential
kernel e~4/1 suppresses longer candidates. The
affinity matrix B assigns higher probabilities to
intra-area than to inter-area links, reinforcing local
connections and discouraging water-spanning shortcuts.
The resulting topology preserves the spatial, modular,
and voltage-layer statistics observed in the real grid.

5. Results
5.1. Evaluation Metrics

Structural metrics are grouped into size, degree
distribution, connectivity, and spatial span. As observed
in Table[T] node counts match by design, and edge counts
differ by at most 7%. The mean degree stays within +0.2



Figure 6. Visualization of SA-DCSBM generated synthetic transmission topology for the El footprint.

of the real value, and the degree Gini is unchanged, so
the overall degree spread is retained.

Table 1. Size and degree distribution metrics for Real
and SA-DCSBM grids, averaged across all voltage
layers.

WECC EI

Metric

Real Model Real Model

Number of nodes 11630 11630 32913 32913

Number of edges 14835 15711 45585 43886
Mean degree 2.56 2.70 2.77 2.67
Degree Gini 0.30 0.29 0.29 0.29

In graph theory, spectral metrics[29] connect the
structure of a network to the eigenvalues of its
Laplacian matrix, offering insights into connectivity and
robustness. The spectral radius is defined as the largest
eigenvalue of the adjacency matrix. It is closely linked
to the capacity and density of loops and paths in the
network. [29] also highlights that the spectral radius
serves as a lower bound for assessing network resilience.

Algebraic  connectivity[30]  quantifies  how
well-connected a network is as a whole. A higher
algebraic connectivity implies that more edges must be
removed to disconnect the system into isolated parts. It is
sensitive to the presence of rare but crucial long-distance
transmission corridors that bridge otherwise weakly

linked regions. In power grid networks, the overall
algebraic connectivity is typically low or close to 0.

In Table[2] the spectral radius is reproduced to within
10%, indicating that the model matches the overall
scale of the dominant flow paths in the real system.
However, the algebraic connectivity is two orders of
magnitude lower in WECC topology, revealing that
the model underrepresents the long-distance ties that
maintain global coherence. These sparse high-capacity
corridors bridge distant regions and enhance the system’s
resilience to fragmentation. Their underrepresentation
means that while local clusters remain well-connected,
the global backbone network is comparatively weaker in
the SA-DCSBM model.

Table 2. Connectivity metrics for Real and SA-DCSBM
grids, averaged across all voltage layers.

Metric WECC El
Real Model Real Model
Algebraic 4 11 139%  885x  6.52x
connectlwty

10+ 10 107 1077
Spectral radius  6.31 5.89 5.67 5.46

Clustering
coefficient (C) 0052 0.060 0.066  0.061

The clustering coefficient C, calculated using the
formulation in [31], remains of the same order of



10711 "y e WECC Model
N~ = WECC Real
1072
>
)
& 1073
| |
5 .‘.l\
o ¢
1074 F
- J'_
- """ Ty
10—5 \ -I
n
100 100 102

Edge Length (km)

Figure 7. Edge length distribution for the model
topology on the WECC footprint.

-14
10 e El Model
o= = ElReal
10—2_
D .‘%b-
& o ~:"
c ""I.,.
8 1074, .’
e %
® =
10- -
L) Ny
= | |
1076 Ty
100 10! 102

Edge Length (km)
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topology on the El footprint.

magnitude in the synthetic networks as seen in Table
E} In both the WECC and the EI models, C stays close to
the real-world values, indicating that the model preserves
local loop density and short-range meshing typical of real
transmission grids. A slight overestimation in the WECC
and a slight underestimation in the EI suggest that the
SA-DCSBM model slightly biases toward more local
clustering in compact regions, while underrepresenting
meshing in more expansive regions. Mean edge length
matches within about a kilometer across layers. Yet, its
standard deviation is always smaller, confirming that very
long spans are hardest to reproduce, as shown in Figure
and Figure[§]

While the exponential kernel offers a straightforward
way to bias sampling toward short links and maintain
a gentle long-distance tail, it still tends to understate
the true variance of the observed distribution when
constrained to a fixed edge budget. Since e(~4/V decays
monotonically from d = 0, it over-weights short and
medium edges relative to long-range edges. As a result,
the synthetic network’s spread of distances remains

tighter than in reality. In practice, recovering the full
empirical variance will require adding a heavier-tailed
component.

Table 3. Edge length statistics for Real and
SA-DCSBM grids, averaged across all voltage layers.

Metric WECC EI

Real Model Real Model

Edge length mean 1390 13.87 13.23 1281
Edge length std 2495 15.11 1749 10.83

Thus, the SA-DCSBM preserves node-level
heterogeneity, realistic geographic scale, and modularity.
However, it does not reproduce the longest ties that
enhance algebraic connectivity, which reflects the
limitation of the modeling choice. These characteristics
can inform future refinements of the SA-DCSBM to
capture grid topology parameters better.

5.2. Intra- vs. Inter-Area Edge Patterns

To evaluate how well the SA-DCSBM reproduces
modular structure in electric grids, key metrics including
modularity Q, intra-area edge fraction @jny,, and
inter-area cut ratio ¢jner are computed for both real and
synthetic networks across multiple voltage layers and
interconnections using,

Mintra Minter (14)

Pintra = > @Pinter = s
m m

where m is the total number of edges.

Figure [9] shows results for the WECC at 345 kV and
500 kV, and the EI at 345 kV, 500 kV, and 765 kV. In
the WECC system, the synthetic graphs closely match
the real network. Modularity values differ by about
0.04 (e.g., O = 0.893 vs. Q = 0.846 at 345 kV), and
intra-area edge fractions remain high (@inra = 0.976 real
vs. 0.958 synthetic). Although the SA-DCSBM model
slightly overestimates the inter-area cut ratio (0.042 vs.
0.024), the overall structural pattern is preserved.

In the EI system, across all three voltage layers,
modularity of synthetic topologies is within 0.02 to 0.03
of the real grid (Q = 0.868 to 0.872 synthetic vs. 0.874 to
0.877 real), and intra-area edge fractions exceed 0.90 in
both real and synthetic cases. Inter-area cut ratios remain
consistent, with real values around 0.091 to 0.092 and
synthetic values between 0.092 and 0.096. These results
confirm that the SA-DCSBM captures both modular
structure and geographic cohesion present in the North
American transmission networks. Thus, SA-DCSBM
enables forward generation of network topologies with
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Figure 9. Comparison of modularity Q, intra-area edge
fraction ¢;,,, and inter-area cut ratio ¢;,,, across real
and synthetic topologies for the WECC and the EI
footprint at various voltage layers.

explicit spatial and modular constraints, supporting its
use in the synthesis of structurally realistic test systems.

6. Conclusion

SA-DCSBM has been shown to generate large-scale
synthetic transmission topologies that reproduce key
structural features of actual grids. Geographic constraints
are incorporated through an exponential distance-decay
kernel, while degree correction and community affinities
capture heterogeneity within the network. Together,
these elements recover observed patterns of community
structure, clustering, and spatial span.

SA-DCSBM remains a structural model; electrical
aspects such as power flows, reactive support,
voltage magnitudes, and frequency dynamics are not
represented. An extension is to couple the topology
generation process with power-flow feasibility and
dispatch constraints, thereby integrating structural
fidelity with system performance. Comparative studies
against alternative spatial generators will further clarify
the value of SA-DCSBM across broader suites of
topological and operational metrics.

Although  the model reproduces
and community structure at scale, it currently
underrepresents long-distance, high-capacity
connections. These rare but essential links contribute
to overall robustness. Potential extensions include the
use of hierarchical spatial penalties to differentiate
intra-area distances from long-haul connections. Such
refinements would enable the framework to capture both
local clustering and the few long-range corridors vital
for bulk system resilience.

spatial
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